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The viscous flow on surfaces with longitudinal ribs 
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The viscous sublayer of a turbulent boundary layer on a surface with fine 
longitudinal ribs (riblets) is investigated theoretically. The mean flow constituent of 
this viscous flow is considered. Using conformal mapping, the velocity distributions 
on various surface configurations are calculated. The geometries that were 
investigated include sawtooth profiles with triangular and trapezoidal grooves as 
well as profiles with thin blade-shaped ribs, ribs with rounded edges and ribs having 
sharp ridges and U-shaped grooves. (This latter riblet configuration is also found on 
the tiny scales of fast sharks.) Our calculations enable us to determine the location 
of the origin of the velocity profile that lies somewhat below the tips of the ridges. 
The distance between this origin and the tip of the ridge we call ‘protrusion height ’. 
The upper limit for the protrusion height is found to be 22% of the lateral rib 
spacing ; the coefficient 0.22 being the value of the expression K-’ In 2. This limit is 
valid for two-dimensional riblet geometries. Analogous experiments with an 
electrolytic tank are carried out as an additional check on the theoretical calculations. 
This is also an easy way to determine experimentally the location of the origin of the 
velocity profile for arbitrary new riblet geometries. A possible connection between 
protrusion height and drag reduction in a turbulent boundary layer flow is discussed. 
Finally, the present theory also produces an orthogonal grid pattern above riblet 
surfaces which may be utilized in future numerical calculations of the whole 
turbulent boundary layer. 

1. Introduction 
The flow on surfaces with fine longitudinal ribs has become a subject of scientific 

research because these non-planar surfaces are capable of reducing the shear stress 
of a turbulent boundary layer to  below that of a smooth surface. 

Historically, there is no doubt that nature has a clear priority for the development 
of drag-reducing surfaces. The skin of fast sharks is covered with tiny scales which 
have little longitudinal ribs on their surface. Shark scales with this structure have 
been found in fossils more than 100 million years old (Reif 1985). In spite of the fact 
that  the particular shape of shark scales has been known to biologists for more than 
a century, the first authors to speculate about their fluid dynamical significance were 
Russian scientists in the late sixties (Burdak 1969; Chernyshov & Zayets 1970). 
Unfortunately, at that time fluid dynamics was not sufficiently advanced to  provide 
sensible explanations for the particular scale shapes visible under the microscope. In  
the meantime, however, the body of knowledge on shark scales has been increased 
considerably (Reif 1982, 1985; Reif & Dinkelacker 1982; Rashi & Musick 1984). In 
figure 1 the scale pattern of a fast shark can be seen, compared to that of a slow shark 
in figure 2. The photographs in these figures are taken from the work of Reif (1985) 
and the drawings are taken from the book on sharks by Steuben & Krefft (1978). 
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FIGURE 1. Silky shark, Carcharhinus faleiformis, 2.27 m length. 

Until the late seventies, this issue had escaped the scrutiny of the community of 
fluid dynamicists. This was partly due to the very fine structure of the shark scales 
which can only be seen using a microscope. Also, it was considered impossible to 
devise a surface having less friction drag in a turbulent boundary layer than that 
produced by a smooth surface. Eventually, the situation changed when details of the 
flow pattern of the viscous sublayer of a turbulent boundary layer became clearer. 
The first documentation of this particular flow pattern was provided by Hama (see 
Corrsin 1956, figure 15, p. 394). More detailed investigations were carried out in the 
sixties by Kline and his coworkers (see e.g. Kline et al. 1967), and later by Smith and 
his coworkers (see e.g. Smith & Metzler 1983). It has been shown by these authors 
that the viscous sublayer exhibits a streaky structure with local regions of low 
velocity, extending in the streamwise direction. One hypothesis to explain these 
‘low-speed streaks ’ is that they are produced by slowly rotating longitudinal 
vortices. There is some evidence to support this idea, for example the flow 
visualization photographs by Cantwell (in Coles 1978, see also Van Dyke 1982, p. 
93) and the theoretical investigations by Jang, Benney & Gran (1986). On the other 
hand, it has been suggested that this streaky structure belongs to a ‘hairpin ’ vortex. 
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FIGURE 2 .  Bramble shark, Echinorhinus brucus, 1.90 m length. 

This is a perturbation pattern which is found quite frequently in turbulent boundary 
layers. For instance, a t  an isolated roughness element on a smooth surface, such a 
flow pattern can be studied in detail, most clearly in the idealized case where this 
obstacle is immersed in a laminar boundary layer (Acarlar & Smith 1987). Tempting 
as i t  may be, we shall not enter here the discussion on the appropriate interpset,ation 
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of the events that have been observed in a turbulent boundary layer. However, we 
would like to stress that  it is sufficiently well documented that there is a streaky 
structure in the viscous sublayer and that this streaky structure has a preferred 
lateral wavelength. This observation has led to attempts to influence the flow 
structure by surfaces with ribs. To our knowledge, the first such attempt has been 
made in the investigation by Liu, Kline & Johnston (1966). The underlaying idea of 
some of the following investigations was also to achieve drag reduction with such non- 
planar surfaces. Eventually, this goal was reached with very fine ribs (riblets) maihly 
due to the careful and systematic work carried out a t  NASA Langley during the last 
decade (Walsh 1980, 1982, 1983, 1984; Wilkinson & Lazos 1987). At about the same 
time, work in Germany which was actually induced by the observation of shark skin 
by W.-E. Reif and A. Dinkelacker, led to  similar results (Nitschke 1983 ; Dinkelacker, 
Nitschke-Kowsky & Reif 1987). A drag reduction, i.e. a turbulent shear stress 
reduction, of about 4-7 YO below that of a smooth flat plate was achieved. There is 
no ambiguity any more about this finding, because a similar drag reduction has been 
documented by various other research groups, e.g. by Bechert, Hoppe & Reif (1985), 
Van Dam (1986), Sawyer & Winter (1987), Choi (1987), McLean, George-Falvy & 
Sullivan (1987), and others. Besides that, successful applications on competition 
boats have been reported and have caused some publicity. 

However, we are still far away from really understanding the operation mechanism 
of riblet surfaces. In addition, we do not know whether 7 YO is the maximum drag 
reduction that can be achieved with non-planar surfaces. In  previous papers (Bechert 
et al. 1985; Bechert et al. 1986) we have suggested a number of hypotheses on the 
actual operation of shark scales, which may lead beyond this limit. At the present 
time, however, there is no direct experimental evidence available to prove that this 
would actually extend the range of turbulent drag reduction. I n  this paper, by 
contrast, we shall confine ourselves to the theoretical investigation of the viscous 
sublayer on surfaces with long straight ribs aligned in the streamwise direction. 
There were two reasons for this research. (i) It is important to know the location of 
the origin of a turbulent boundary layer on a riblet surface. (ii) It may be possible 
that this viscous flow calculation provides some hints for an improved configuration 
of a drag-reducing riblet surface. 

2. Basic considerations 
One of the unsettled questions concerning riblet surfaces was where the average 

origin of the velocity profile might be located. This question was raised in the paper 
by Hooshmand, Youngs & Wallace (1983) and we suggested in a previous paper 
(Bechert et al. 1985) that this problem could be solved by a viscous flow theory. 
Figure 3 shows the apparent (or average) origin of the velocity profile which lies 
below the tip of the rib and above the bottom of the valley between the ribs. We call 
the distance between apparent origin and rib tip the protrusion height, because it 
determines how far the rib tips protrude into the boundary layer. 

We consider the average mean flow of the viscous sublayer in which the riblet 
surface is immersed. In  the following equations we choose 2 as the direction of the 
mean flow, y as the direction normal to the surface and z as the lateral direction. We 
start with the first Navier-Stokes equation 

au au au au 1 ap 
at ax ay a2 pax -+u-+v-+w-+-- = vv2u. 
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FIQURE 3. Apparent origin of a riblet surface. 

Obviously, for a mean flow calculation, the first term of the equation can be omitted. 
If the riblet surface is completely immersed in the viscous sublayer, neglecting the 
convective terms on the left-hand side of the equation is certainly a good 
approximation. In fact, previous experiments do show that the relevant parameter 
regime where drag reduction occurs corresponds to the situation where this condition 
is just fulfilled. We shall return to this issue more explicitly in the discussion ( 5  10) 
a t  the end of this paper. We assume a flat-plate boundary-layer flow without mean 
flow pressure gradient, so aplax = 0. For ‘two-dimensional ’ riblets which do not 
vary in cross-section in the streamwise direction, we are left with the equation 

which is a Laplace equation for the velocity u. To solve this equation in two 
dimensions, various established techniques can be used. One particularly suitable 
one is conformal mapping. This technique has two striking advantages: (i) Sharp 
edges which produce singularities in the flow field do not lead to problems or 
inaccuracies with this method whereas, for example, purely numerical methods 
would encounter such problems. (ii) For a variety of configurations, solutions in 
closed form can be worked out. In particular, simple formulae for the protrusion 
height can be produced. 

Conformal mapping utilizes the fact that for the Laplace equation (2) arbitrary 
functions f(z+iy) are solutions. The function f, the mapping function, has to be 
selected so that the boundary condition on the riblet surface is u = 0. The mean flow 
u-distribution will be a uniform Couette shear flow in order to emulate the viscous 
sublayer. What we shall do by conformal mapping is to transform a uniform shear 
flow above a smooth plane surface into that above the particular riblet surface. So 
the task is to do mathematically what is shown in figure 4. By the way, the solid lines 
in figure 4 are not streamlines, but lines of constant velocity u (isotaches). In 
conformal mapping we usually plot the real and imaginary part of a function, so we 
obtain a netyvork with lines intersecting each other perpendicularly. If the imaginary 

\ 
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FIGURE 4. Conformal transformations leading to  the viscous flow on a sawtooth riblet surface. 

part of our function is u, what is then the significance of the real part, i.e. the broken 
lines in figure 4 1 The answer is simple : between two broken lines a shear force 

AF = IT, AX (3) 

is transmitted. In (3), 1 is the length in the streamwise (5) direction and Az is the 
spacing between two broken lines of the undisturbed grid far above the riblet surface. 
T~ is the shear stress r0 = ,udu/dy, where duldy is the velocity gradient above the 
smooth surface or far away from the riblet surface. Thus, we call the broken vertical 
lines in figure 4 force lines (isodynes). 

3. Riblets with a sawtooth profile 
Riblet surfaces with a sawtooth-like cross-section have been extensively tested by 

Walsh (1980, 1982, 1984) and they do produce drag reduction in a turbulent 
boundary layer. Therefore, we have chosen this configuration as a first example in 
our viscous flow analysis. The procedures of the conformal transformations are as 
follows (see figure 4) : 

(a )  A rectangular grid of velocity lines and force lines in the w,-plane (w, = z1 + iy,) 
is fixed. The vertical extension of the grid is chosen from y1 = 0 to an arbitrary upper 
value, and the horizontal extension of z1 is from -in to +an. 

( b )  This grid is transformed by the mapping function sinus, i.e. w, = sin wl. 
( c )  The half-plane above tt straight horizontal line can be transformed into the 

plane inside a polygon by virtue of the Schwarz-Christoffel transformation. For 
details on this technique see, for example, the books of Betz (1964) and Kober (1957). 

The Schwarz-Christoffel transformation provides the mapping function to relate 
the w,-plane to the w,-plane: 

C, is a constant and the integration of (4) will produce another constant, C,. These 
two constants have to be determined later. a is the corner angle of the polygon (see 
figure 4). In  order to carry out the integration, it is useful to introduce the following 
substitution : 

(5) 
6 = (L)' w -1 ii with - l a  = - 

w , + l  n R' 

We obtain wg = nC, - + c2. 
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This integration can be carried out for n being an integer number (see Gradstein & 
Rhyshik 1981). For n = 4 (a  = 45O), we obtain, for example, 

11 
with 5 = (wz- l/w,+ 1);. For this case, the constants had been determined as 

(7) 

in order to obtain a grid pattern with dimension and orientation in figure 4. 

we have worked out the mapping functions for: 
For other angles, the mapping function can become more cumbersome. However, 

n 3 4 6 8 

a 60" 45" 30' 22.5" 
ridge angle 120' 90" 60' 45" 

The formulae of the mapping functions are given in the Appendix. The grid pattern, 
i.e. the velocity distributions and the force lines are given in figure 5. These drawings 
are computer plots of our equations. The reference grid can be seen on the right-hand 
side of each plot in figure 5. The apparent origin, i.e. the location of an equivalent 
smooth surface, corresponds to the lowest horizontal line with zero velocity of this 
reference grid. Several things become obvious from these plots: (i) The velocity 
perturbations caused by the riblet structure are vanishing very rapidly with 
increasing distance from the riblet surface. (ii) There is very little fluid motion and 
extremely low shear stress a t  the bottom of the grooves, in particular for the smaller 
riblet angles. (iii) The protrusion height h, does not seem to increase above a certain 
fraction of the riblet spacing s. 

This latter observation can be quantified further. We find through the coordinate 
transformations where the different points A and B move for a riblet surface, in 
comparison to  the undisturbed reference pattern (represented by a = 90" or n = 2). 
In this way, we can derive a general formula for the protrusion height h, for arbitrary 
riblet angles. The details of this calculation are given in a previous conference paper 
(Bechert et aZ. 1986). We find 

y+21n2+--- 
s 2 K  t a n a  a (9) 

In  this equation, y is the Euler constant y = 0.5772 and @ is the Digamma function, 
as defined and tabulated in the tables of Abramovitz & Stegun (1972). In  figure 6 we 
have plotted (9) for the protrusion height versus the height of the riblets. Both 
quantit,ies have been made dimensionless with the riblet spacing s. For low values 
of the relative riblet height his, the protrusion height is half the riblet height, i.e. 
h, !z ih. For high riblets, however, there is a saturation of the protrusion height a t  

= 0.2206s. This saturation limit (0.2206 = In 2/z) is an important and unex- 
pected finding of this paper. We shall see in the next section whether this limit value 
is also valid for other configurations. 

hPmex 
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FIGURE 5. u-velocity and fluid shear force distribution of the viscous flow on a sawtooth riblet 
surface for various riblet angles. 
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FIGURE 6. Protrusion height h, as function of geometrical height h for various types of 
riblets. 

4. Riblets with trapezoidal grooves 
For trapezoidal grooves, the Schwarz-Christoffel transformation again provides 

the mapping function in order to relate the w,-plane to the w,-plane. However, this 
time we have one more corner in the configuration. This produces (see Kober 1957) 
one more term in the denominator of the mapping function corresponding to (4) in 
the preceding section. To integrate this equation is somewhat cumbersome. The 
details of this calculation are given in Bartenwerfer & Bechert (1987). The protrusion 
height can be expressed in terms of Gamma functions and Hypergeometric functions. 
We have evaluated these functions numerically and the computed curves are quite 
easy to understand (see figure 7). Of course, the data for the trapezoidally grooved 
riblets must lie between the sawtooth riblets of the preceding section and thin blade- 
like riblets, which we shall calculate with an independent approach in the following 
section. 

In  addition, we have evaluated an asymptotic equation for the protrusion height 
h, for small riblet height h :  

(10) 
%-(l-y)i+-- s, h s, h 
S s 2s’ 

with s, being the width of the foot of the rib (see figure 7).  For h / s  > 1 we have 
another approximate formula, which is essentially an interpolation between the 
asymptote of the blade riblet and the curve of the sawtooth riblet: 

% -  s (1--1)+k[y+21n8+---- s In2 
t a n a  n + 4 + ; ) ] .  a 



114 D. W. Bechert and M .  Bartenwerfer 

0’25 : 

FIGURE 7. Protrusion height h, as a function of geometrical height h for riblets with trapezoidal 
valleys. The riblet foot breadth s, is kept constant for each curve. 

Another probably more useful way to plot the data in figure 7 can be seen in figure 
8. Here, for each individual curve, the rib tip angle is kept constant and the depth 
of the grooves is varied. For small groove depth all curves behave like blade riblets. 
On the other hand, the asymptotic value of h,/s for deep grooves is given by the 
data of the sawtooth riblet. The asymptotic protrusion height for deep grooves is 
reached a t  a groove depth h/s  between 0.4 and 0.6. Therefore, a groove deeper than 
h/s  x 0.6 has no influence whatsoever. 

We have also worked out an approximate equation for the asymptotic value of 
h,/s with the rib tip angle being kept constant : 

valid for h/s  > 0.6 and a/n < 1/12. 
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FIGURE 8. Riblets with trapezoidal valleys as in figure 7. The riblet tip angle is kept constant 
for each dashed curve. 

5. Blade-shaped riblets 
Two-dimensional blade-shaped riblets have been introduced by Wilkinson & Lazos 

(1987) as a drag-reducing surface. Therefore, we also carry out the viscous flow 
calculation for this configuration. As in the preceding section, the viscous flow on 
blade-shaped riblets can be calculated using the Schwarz4hristoffel transformation. 
In fact, a transformation with n = 2 (i.e. rectangular corners) and a shift in 
coordinates between the w2- and the w,-planes would do the job. However, the 
following procedure to solve the problem is different and resembles somewhat the 
procedure to calculate the flow in blade rows of turbomachines (Betz 1964). Its basic 
advantage is that it can be modified to deal with other configurations such as 
scalloped riblet shapes, which are found on shark scales. 

If we use methods of turbomachinery flows, we may draw the reader's attention 
to an obvious fact : the grids representing lines of u = const and F = const look like 
streamlines !P = const and potential lines @ = const of a potential flow field. In spite 
of the fact that we do not really consider a stream in the (x,y)-plane we may, 
however, utilize this analogy. This has the advantage that, as fluid dynamicists, we 
are used to thinking in terms of streamlines. It is, for example, easy to see what a 
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FIGURE 9. Conformal transformations leading to  the viscous flow on a blade riblet surface. 

stagnation point and a stagnation streamline in the (Y, @)-plane are. However, what 
would we call them in our (u, P)-plane 1 Thus, we shall use !?' and @ instead of u and 
F ,  intermediately. At the end of our calculations, we shall just change the names of 
the functions back to u and F ,  their real meaning. 

In the (!P, @)-plane, the task is to  find the potential flow around an array of blades. 
This task is carried out in several steps (see figure 9). The w,-plane is not shown in 
figure 9. It is, as before, an undisturbed rectangular Y, @ (or u, F) grid. The flow in 
the w,-plane is the flow around a cylinder of radius a, induced by a vortex with 
strength &. The induced field of this vortex alone would be 

11 
@ + i Y  = 41n(z,+iy2) .  

2n 

In order to fulfil the no-penetration condition on the surface of the cylinder, we need 
a mirror-image vortex of identical strength 4, but with negative sign, inside the 
cylinder a t  an eccentric location E. Having only these two vortices would produce a 
field with circles as streamlines everywhere. Also, as we would see later, the 
streamlines in the final w,-plane would not be these of a horizontal parallel flow. This 
latter condition is fulfilled if we install an additional positive vortex of strength 4 
in the centre of the cylinder. 

We shall not show all the details of the mathematics here. Since there are no 
unusual steps involved, we shall show only a few equations and outline the 
essential steps of the transformations. The stream function of the flow around the 
cylinder in figure 9, which is the stream function of the sum of the three vortices, is 
found to be 

where w 2  = z, + iy,. The radius of the cylinder is a and the distance between the origin 
a t  A (where the inducing vortex is located) and the centre of the cylinder a t  M has 
been set equal to  one. 

The streamlines can be calculated by inverting (14) to find w2 a t  a given wl .  Since 
(14) is a quadratic equation for w,, this is a straightforward procedure. By following 
one Y = const. line through the w,-plane, one can decide which one of the two 
solutions of the quadratic equation is to be chosen. 

The next step is to  'smash' the cylinder in figure 9 to  obtain a single blade of finite 
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The transformation capable of doing that is well known from airfoil theory, 
Kutta-Joukowsky transformation 

length. 
i.e. the 

a2 
w3 = w,+- 

W2 

Before we apply this transformation, however, we have to shift the origin of the 
coordinate system from A to the centre of the cylinder, M. Thus, with the appropriate 
adjustment of constants, we have instead of (15) 

a2 

(5932-1) 
wg = (w2-1)+--- + 1 +a2. 

After having applied the Kutta-Joukowsky transformation, the point A has moved 
a bit to the left and, interestingly, the stagnation streamline Y = 0 still remains a 
circle. 

Before performing the next step, we move the origin back to the (shifted) centre 
of the inducing vortex, A. By applying the transformation In w we obtain the desired 
periodical flow pattern on the blade row. With the proper choice of constants, the 
transformation equation is 

is 

where s is the riblet spacing. The result of this transformation can be seen in figure 
9. The broken line is the stagnating streamline Y = 0 and is equivalent to the 
location of the wall with u = 0. The height of the riblets can be controlled by 
changing the radius a of the circle in the w,-plane (see figure 9). After some 
intermediate calculations, one can find the relation that determines the riblet height 
h :  

h 1  
- = - arctanh a. 
s x  

With the above outlined procedure, a set of flow patterns has been calculated for 
various riblet heights, see figure 10. 

The protrusion height hp is the height of the riblet h minus the upwards shift of the 
streamlines (lines of constant u) in the w,-plane of figure 9. Its magnitude can be 
determined by carefully determining the locations of the points in the different 
planes after the different transformations. We find after some intermediate 
calculations 

% = i l n ( l + t a n h e ) ) .  s n  

From (19), one can see, that h, x h for small h/s. This means that, for very small 
blade riblets, the protrusion height is equal to the real height of the blade riblets. 

On the other hand, for large blade heights, the blade riblets behave like the 
sawtooth riblets, see figure 6. This is because for very deep grooves only the top of 
the blade takes the viscous force. Obviously, the top of the blade is identical for deep 
grooves on sawtooth riblets and on blade riblets. Thus, the limit value for the 
protrusion height is again h,/s -+ In 2/n for large h/s.  
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FIGURE 10. u-velocity and fluid shear force distribution of the viscous flow on blade riblet 
surfaces for various riblet heights: (a) h/s  = 0.25; (6) 0.5; (c) 1.0. 

6. Scalloped riblets 
Riblets with scalloped cross-section are found on the scales of fast sharks. In 

laboratory experiments, it has been shown that scalloped riblets with semicircular 
shape match the best sawtooth riblets, with a drag reduction of 7 % (Walsh 1982 ; 
Bechert et al. 1985). The viscous flow calculation on these scalloped riblets can be 
carried out with a modification of the transformations that we used for blade riblets. 

The Kutta-Joukowsky transformation in the preceding section (equation (15)) 
had a constant a equal to the cylinder radius a. We obtain scalloped riblets if this 
radius of the mapping circle, which we call now b,  is larger than the cylinder radius 
a, see figure 11. In addition, the mapping circle is no longer coaxial with the cylinder. 
The position of the mapping circle has to be chosen so that it touches two streamlines 
with the same value (Y,,), but opposite sign, at the horizontal axis, yz = 0. The 
streamlines between - Yc and + Y, penetrate into the blade in the w3- and w,-planes. 
In  the final plane, w4, the Yc streamlines become the scalloped wall contour of the 
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wl-plane w,-plane w,-plane 
FIGURE 11. Conformal transformation leading to the viscous flow distribution on a 

riblet surface with scalloped cross-section. 

FIGURE 12. u-velocity and fluid shear distribution of the viscous flow on a scalloped riblet surface. 
(a )  Riblet height h/s = 0.25, parameter a/b  = 1.155, protrusion height h,/s = 0.155. (b) Scalloped 
riblet with nearly semicircular cross-section. Riblet height h/a = 0.50, parameter alb  = 1.192, 
protrusion height h,/s = 0.192. ( c )  Scalloped riblet; height h/s = 1.00, parameter a / b  = 1.0325, 
protrusion height hp/s = 0.216. 
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riblets. By numerical trial, cylinder radius and mapping circle radius can be adjusted 
so that the riblet contour is very close to a semicircle. This particular configuration 
and its flow distribution is shown in figure 12 (b ) .  Of course, the velocity value on the 
surface has to be readjusted so that u = 0 a t  the contour !Pc. In  this particular case, 
the protrusion height is h,/s = 0.192hls. Other scalloped surfaces and their flow 
distributions are given in figure 12(a, c). In general, the protrusion height of 
scalloped riblets lies between sawtooth riblets and blade-shaped riblets. But, as one 
can see from figure 6, they can indeed be very close to blade riblets. Of course, 
mechanically, scalloped riblets are much more durable than blade riblets. 

7. Rounded ridges 
In technological applications of riblet surfaces, the wedge at the tip of the riblet 

will never be sharp with a radius of curvature equal to zero, as assumed in the 
preceding examples. Thus, it is important to know what the influence of afinite 
radius of curvature may be. 

Similarly to the preceding modification of the mapping function which produced 
scalloped riblets, one can modify the Kutta-Joukowsky transformation into the 
other direction, which is more familiar from airfoil theory. If one chooses a mapping 
circle radius smaller than the cylinder radius, one obtains 'club '-like blade riblets 
with rounded edges, see figure 13. Also the modified flow pattern can be seen in the 
example calculated in figure 13. 

The calculations, which are given in more detail in Bartenwerfer & Bechert (1987), 
clearly show that there is a dramatic decrease of the protrusion height h, caused by 
a finite radius of curvature R, at the rib wedge. A sample of our calculated examples 
of club-like riblets is given in figure 14. For small R,/s we found an approximate 
equation, which shows the decrease of h,/s (as compared to  the protrusion height for 
infinitely small radius of curvature) 

h h  tanht(nh/s) ZR, 4 
(20) 

As one sees from this equation or from figure 14, one loses about 10% of the 
protrusion height if the radius of curvature on the rib tip is only 0.5 % of the lateral 
rib spacing. If one relates the protrusion height to the maximum thickness t of the 
club-like wedges (see figure 13), one can compile another approximate equation from 

(4. 4=41 - 
Rk-0 2n 

The value of (h,/s) I R k = O  can be taken from (19). Equation (21) is valid for t / s  < 0.1 
and 0.5 < h / s  < 1.0. 

One may consider our club-like riblets as too artificial and restricted in their shape. 
Of course, there are also other ways to generate rib shapes with rounded tips. One 
such possibility is this : we take the flow distribution above thin blade-like riblets as 
considered in the preceding section, for example, those in figure 10. We choose a line 
u = const. above the actual surface and consider this as the new surface. Obviously, 
this produces a variety of riblet surfaces with rounded edges. Our numerical data 

t This equation is identical to equation (23) in our Bechert el al. 1986, but it deviates by the 
coefficient 2 from (76) in our previous report (Bartenwerfer & Bechert 1987) where this latter 
equation is mistyped. 
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FIGURE 13. Blade riblet with rounded edge: configuration and flow distribution. Riblet height 
h/s = 0.50, parameter a/b  = 0.773, protrusion height hp/a = 0.179, maximum thickness 
t / s  = 0.0740. 
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FIGURE 14. Influence of the tip radius of curvature R,  on the protrusion height h,, of club-like 
riblets for various riblet heights h. 

indicate a law very similar to that of (20). However, these data can be collapsed best 
if one multiplies the second term on the right-hand side of (20) with the coefficient 
1.3. 

This additional enhancing coefficient reflects the fact that, with increasing radius 
of curvature, the wedge angle of the riblets is also increased, which further decreases 
the protrusion height (see $4 on trapezoidally grooved surfaces). 
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FIQURE 15. Convex riblet, u-velocity and shear force distribution. (a) Riblet height h/s  = 0.50, 
parameter a / x  = 0.1305, protrusion height h,/s = 0.0724. (b) Riblet height h/a = 1.00, parameter 
a / x  = 0.0275, protrusion height h,/s = 0.0767. 

8. Convex riblets 
The mathematical methods in the preceding section are unable to produce convex 

riblets with, say, semicircular shape. However, experiments with these configurations 
have been carried out (Walsh 1982) and thus we were also interested in this 
configuration. 

Owing to a programming error in our data plotting program for sawtooth riblets, 
we ran inadvertently into the solution of this problem. Consider the mapping 
function, (7) in $3. By omitting the second term we obtain 

Instead of the originally expected pattern, we get the viscous flow above two convex 
riblets per division s. By varying the parameter n = n/a in the function 6 of (22), we 
can vary the depth of the grooves. Figures 15 ( a )  and 15 (b )  show the viscous flow on 
convex riblets, calculated with the mapping function (22), the grid size being 
normalized to obtain one riblet per division s. 

The protrusion height can be calculated for each pattern. It is h,/s = 0.0724 for 
figure 15(a) and 0.0767 for figure 15(b).  For convex riblets, the protrusion height is 
always very small. 
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FIUURE 16. Schematic diagram of the electrolytic experiment. 

9. Electrolytic experiments 
It appeared desirable to aIso be able to determine the protrusion height for riblet 

configurations with shapes different from the ones already considered. For this 
purpose we devised a simple experimental technique. In  addition, this will provide 
an independent proof for our theoretical calculations. It is well known that the 
electric field in a conductor, for example, an electrolyte, obeys the same Laplace 
equation as a potential flow does. Obviously, this method is also applicable to our 
viscous flow problem. I n  the model experiment, lines of constant velocity u would 
correspond to lines of constant voltage V in an electrolytic tank. However, besides 
obtaining velocity distributions using a point probe, we can also easily measure the 
protrusion height. For this latter purpose we have established a measuring set-up 
which is shown schematically in figure 16. We measure the resistance R of thc 
rectangular electrolytic tank without and with the riblet electrode via a voltage 
measurement. The resistance of the tank without the riblet electrode is proportional 
to the length L of the tank. The dccrease in the resistance caused by the presence of 
the riblet electrode is equivalent to a decreased length L’ of the electrolyte. We have 

L - L ’ =  h-h, (23) 

and h, = h-(L-L’),  (24) 

where h, is the protrusion height and h is the geometrical height of the riblet, as 
before. The shape of the riblet electrode has to be chosen so that the walls of the 
rectangular tank are symmetry planes. 

The electrolytic measurements of the protrusion height h,/s plotted versus the 
geometrical height h / s  can be seen in figure 17. The agreement clearly shows that our 
calculations are correct. There is, however, a systematic deviation : the measurements 
on the blade riblets show a protrusion height about 5% lower than the theoretical 
values. We assume that this minor discrepancy is caused by the finite thickness of the 
blades of the blade riblet electrodes. The blade thickness is t = 0.025s. Then our 
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FIGURE 17. Protrusion height. Electrolytic experiments versus theory. Experiment : A, 
sawtooth riblet; + , blade riblet. Semicircular riblet: 0 ,  theory; 0% experiment,. 

approximate formula for the decrease of the protrusion height, (201, would prcdict a 
decrease of 5%. Thus, t h e  discrepancy is explained. 

The reader who is interest4ed in the technical details of the experiment is referred 
to our previous conference paper on this issue (Bechert et al. 1986). 

10. Discussion 
In this final section we shall try to establish a connection between our viscous flow 

calculations and the issue of turbulent shear stress reduction by riblet surfaces. Since 
that, problem as a whole cannot be solved analytically a t  the present time, this part 
of the paper will contain both proven and other still hypothetical material. Having 
carried out numerous experiments on turbulent drag reduction, we are modest 
enough to admit that many of our previous plausible-looking ideas have failed. Thus, 
we are aware of the possibility that some of our present opinions may change in the 
future. However, what we conclude below is compatible with the data available to 
us a t  the present time. 

(i)  Our theoretical calculations are certainly valid under purely viscous flow 
conditions. Howcvcr, it took us some time to convince ourselvcs that such a theory 
is also useful for a prediction of the viscous sublayer flow in a turbulent boundary 
layer. In fact, for the parameter regime where drag reduction occurs, the riblet 
surface is actually almost completely imbedded in the viscous sublayer. To give an 
example: we consider sawtooth riblets with riblet height equal to lateral riblet 
spacing (Walsh 1982). There, the optimal lateral spacing is about s+ = 15. s+ is given 
in ‘wall units’, i t .  s is made dimensionless with the shear stress velocity [ ~ ~ / p ] l  and 
the kinematic viscosity u. Thus sf = ~ [ 7 ~ / p ] ~ / u  with 70 being the shear stress of the 
smooth reference plate under otherwise identical flow conditions. The protrusion 
height for this geometry is h, = 0.18s (see figure 6) or hi = 2.7 .  Thus, the rib tips 
protrude only 2.7 wall units above the origin of the velocity profile. By all available 
definitions of the thickness of the viscous sublayer (y’ = 5 ,  or y+ = 3 for the ‘linear 
sublayer’) this means that the riblets are imbedded in the viscous sublayer. Also, 
hot-wire data of mean flow quantities on riblet surfaces (Wallace 1987) support our 
approach. Clearly, our calculations can be valid only within a regime very close to the 
riblet surface. 

(i i)  We would like to stress that our calculation cannot predict quantitatively any 
turbulent shear stress reduction by riblet surfaces. It can only predict the velocity 
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and shear stress distribution once the average shear stress is known. An integration 
of the shear stress distribution on a riblet surface using our theory is possible, but will 
lead to the trivial result that the average shear stress is given by the slope of the 
Couette flow above the riblets. 

(iii) The merit of our calculations is, however, that the origin of the velocity profile 
can be predicted. The origin lies below the rib tips, usually a t  a distance of 10-20% 
of the rib spacing. This distance, which we call the protrusion height h,, cannot exceed 
22% of the lateral rib spacing (0.22 = n-lln2). 

(iv) The above-mentioned limit of the protrusion height is valid only for that class 
of configurations where the tip of the rib looks, with increasing groove depth, more 
and more like a thin blade. Thus, this limit is valid for sawtooth riblets, blade riblets, 
riblets with trapezoidal grooves and riblets with scalloped cross-section. Con- 
figurations that are altogether different, for example, thin wires stretched above a 
smooth plate (suggested by Kramer 1939) are likely to have also a different limit for 
the protrusion height. 

(v) The determination of the origin of the velocity profile is not only of academic 
interest. For instance, for experiments with riblet surfaces inside tubes, it is 
important to know the effective inner diameter of the tubes. Without knowledge of 
this effective inner diameter, it  would be hard to make any statements about friction 
losses in tubes with riblets. 

(vi) We think that the method of conformal mapping to incorporate the boundary 
conditions of riblet surfaces may be valuable for further work in this field. For 
instance, the viscous sublayer model of Pearson (1988) utilizes this approach. 
Furthermore, for numerical computations with the full Navier-Stokes equations, it 
is desirable to have an orthogonal grid with a high resolution in the critical regions, 
i.e. close to the rib tips. Our conformal mapping grids do have exactly that property 
and may thus turn out to be useful for numerical computations. 

We feel, however, that there should be a connection between our calculation and 
the ability of riblet surfaces to decrease turbulent shear stress. Our basic hypothesis 
is that sharp ribs do impede the instantaneous crossflow in the viscous sublayer, 
which is generated by the turbulent motion. In this way the whole turbulent 
momentum exchange in the boundary layer is also reduced, which is equivalent to 
a shear stress reduction. This should occur if the rib tips protrude sufficiently above 
the origin of the velocity profile. More insight into the mechanism can be obtained 
from a discussion of the experiments by Wilkinson & Lazos (1987). A schematic 
survey of their experiments can be seen in figure 18. Blade-shaped riblets with 
different ratios h/s,  i.e. height to lateral spacing, have been tested. On the vertical 
axis 7/70 is plotted, the ratio of the turbulent shear stress of the riblet surface to that 
of the smooth surface. On the horizontal axis, the dimensionless riblet spacing s+ is 
plotted. The protrusion height is calculated from (Zl), taking the finite thickness of 
the ribs into account. The data in figure 18 show an increase of drag if the blades 
protrude too far into the boundary layer. For lower values of the dimensionless 
protrusion height hp', drag reduction occurs. For sparse blades (see curve with h/5 = 
0.153), little effect on the flow is exerted. The more blade there are, the higher is the 
effect on the flow (see curve with h / s  = 0.797). Our viscous calculation, however, tells 
us that the protrusion height, and with it the effect on the cross-flow, finally 
decreases if the blades are too close to each other. From these considerations, it 
emerges that the protrusion height seems to have some relation to the ability of 
riblets to impede the cross-flow. Roughly speaking, this ability should depend on how 
far the ribs stick out from the surface, which indeed points to the protrusion height. 

5-2 
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FIGURE 18. Turbulent shear stress on blade-shaped riblets, according to 
Wilkinson & Lazos (1987). 

At first glance, there seems to be a contradiction between this suggestion and the 
observation (see figure 18) that the ribs should not protrude too far into the turbulent 
regime. However, given a maximum admissible protrusion height in terms of h;, it 
is easy to see that we can accommodate more ribs in the lateral direction if the ratio 
h,/s is maximal. This, again, points to a high hJs .  At the present time, there is no 
piece of experimental evidence available to us that contradicts this concept. In fact, 
there are several previous experiments that  support our point of view: (i) convex 
riblets do not produce drag reduction (Walsh 1982) ; (ii) riblets with a very shallow 
groove exhibit only a very small drag reduction (Walsh 1980); (iii) from Walsh's 
(1982) and our own experimental data we know that riblets that do not have really 
sharp wedges are inferior in their drag reducing ability. 

Given this guideline, and using our viscous flow calculations, an optimal riblet 
configuration should have : 

(i) a sharp wedge for the rib, preferably with a radius of curvature smaller than 
0.5-1 % of the lateral rib spacing; 

(ii) a rib wedge angle as small as possible; and 
(iii) a valley depth of about 60% of the lateral rib spacing. 
At the present time, mainly sawtooth riblets with an h / s  ratio (height to rib 

spacing) of unity are used. Also, the wedge angle of these sawtooth shapes of about 
55" seems perhaps too high. The riblet configuration which we found on the scales of 
the Silky Shark (Carcharhinus falciformis) seems to us optimal in the light of the 
above considerations. It has a scalloped cross-section with a groove depth h / s  of 
0 .54 .6  and very sharp ridges with a wedge angle of about 30". On the other hand, 
we are aware of the fact that our suggested optimal riblet configuration would 
promise only a modest improvement of the protrusion height and, with it, hopefully, 
the drag-reducing performance. 

We appreciate the numerous valuable suggestions on our manuscript by Dr S. 
Schiimmelpult and Professor H. Hahnebiich. 
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Appendix. Transformation functions for various ridge angles of sawtooth 
riblets 

Note that in all cases w2 = sin w1 and 6 = (wz- l /w,+ l ) l l n  (equation (5)). 
(i) Normalized undistorted grid n = 2 ; a = 90" 

w3 = is l+-ln- = -(w1+$c). [ I 2:, 
(i i)  n = 3 ;  a = 60"; ridge angle = 120° 

d3arctan- . ( A 2 )  +1/3arctan-- 
d3 11 2f[+ 1 

d3 

(iii) n = 4 ; a = 45" ; ridge angle = 90' 

w 3 = +  I+ -  1n*+2arctang . [ ;( 1-' 11 
(iv) n = 6 ;  a = 30"; ridge angle = 60" 

+ d 3  arctan ~ + 1/3 arctan - 
26- 1 

d 3  

( v )  n = 8;  a = 22.5O; ridge angle = 45" 

6'- d2 '+ + 2 arctan 6 

+2/2arctan(1/2 6-1)+.\/2arctan(2/26+1 
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